

Recon-GLGAN A Global-Local context based Generative Adversarial Network for MRI Reconstruction

Balamurali Murugesan, Vijaya Raghavan S, Kaushik Sarveswaran, Keerthi Ram, Mohanasankar Sivaprakasam

Healthcare Technology Innovation Centre Indian Institute of Technology Madras, India October 17, 2019

Magnetic Resonance Imaging (MRI)

- Diagnostic modality Excellent spatial resolution, Soft tissue contrast, Non-invasive nature, Lack of ionizing radiation
- Long data acquisition time Patient discomfort, Higher scan cost
- Undersampling k-space to accelerate acquisition process.
- Zero-filled k-space results in aliasing artifacts.
- Deep learning Reduce the aliasing artifacts.

K-space to Image methods:

- Image reconstruction by domain-transform manifold learning (Nature 2018)
- Translation of 1D Inverse Fourier Transform of K-space to an Image Based on Deep Learning for Accelerating Magnetic Resonance Imaging (MICCAI 2018)

Image to Image methods:

- Accelerating magnetic resonance imaging via deep learning (ISBI 2016)
- Generative adversarial network (GAN) based approaches (Our interest)

GAN background

Н

- 1. GAN consists of generator (G) and discriminator (D) networks.
- 2. The goal of the G is to map a latent variable to the distribution of the given true data that we are interested in imitating in order to fool the D.
- 3. The D aims to distinguish the true data from the synthesized data.

GAN based approaches

Network	Generator	Discriminator	Loss function
GANCS ¹	U-Net with residual connections	DL classifier	MSE (img) + Adv
ReconGAN ²	MS U-Net with residual connections	DL classifier	MSE (img) + Adv + MSE (freq)
DAGAN ³	U-Net with residual connections	DL classifier	MSE (img) + Adv + MSE (freq) + VGG
SEGAN ⁴	U-Net with multi-scale filterss	DL classifier	MSE (img) + Adv + SSIM
ComGAN ⁵	U-Net with residual connections	DL classifier	MSE (img) + Adv + MSE (Freq) + SSIM

¹Deep generative adversarial neural networks for compressive sensing (TMI 2019) ²Compressed sensing mri reconstruction using a generative adversarial network with a cyclic loss (TMI 2018) ³Dagan: Deep de-aliasing generative adversarial networks for fast compressed sensing mri reconstruction (TMI 2018) ⁴SEGAN: structure-enhanced generative adversarial network for compressed sensing MRI reconstruction (AAAI 2019) ⁵Complex fully convolutional neural networks for mr image reconstruction (MLMIR 2018)

Application driven MRI

Incorporating prior information about the end goal in the MRI reconstruction process would likely result in better performance.⁶

- Prior Region of Interest (ROI)
- End goal Segmentation
- Better performance Reconstruction and segmentation

⁶Application-driven mri: Joint reconstruction and segmentation from undersampled mri data. (MICCAI 2014)

- Cardiac MRI: ROI Heart region
- Limitation: Previous GAN based reconstruction methods does not

specifically use ROI information.

• Proposed Recon-GLGAN: MRI reconstruction with emphasis on ROI.

Proposed architecture - Recon-GLGAN

Generator : U-Net

Context Discriminator :

- 1) Global feature extractor
 - a) 3 Conv layers + 2 FC
 - b) Activation function: ReLU.
 - c) Output 64d vector.
- 2) Local feature extractor
 - a) 3 Conv layers + 2 FC
 - b) Activation function: ReLU.
 - c) Output 64d vector.
- 3) Classifier
 - a) 128d vector
 - b) FC layer (128 x 1)

$$L_{total} = \lambda_1 L_{imag} + \lambda_2 L_{context} \tag{3}$$

$$L_{imag} = E_{x_u, x_f}[||x_f - G(x_u)||_1]$$
(4)

$$L_{context} = E_{x_f}[log(D(x_f))] + E_{x_u}[-log(D(G(x_u)))]$$
(5)

where L_{imag} is the L1 loss between predicted and target fully sampled image, $L_{context}$ is the context adversarial loss.

- Automated Cardiac Diagnosis Challenge (ACDC)⁶
- Training: 1841 and Validation: 1076 2D slices.
- Dimensions: Image (160 x 160), ROI (60 x 60).
- Fixed cartesian undersampling masks for 2x, 4x and 8x accelerations.
- Sampling pattern : Ten lowest spatial frequencies, Remaining frequencies follow a zero-mean Gaussian distribution.

⁷Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved? (TMI 2018)

Η

Experiment 1: Quantitative comparison of Recon-GLGAN with baseline GAN for 2x, 4x and 8x accelerations for the whole image (FI) and region of interest (ROI).

			NMSE	PSNR	SSIM
2x	FI	Zero-filled	0.01997 ± 0.01	26.59 ± 3.19	0.8332 ± 0.06
		UNet	0.00959 ± 0.00	29.7 ± 2.97	0.9069 ± 0.03
		GAN	0.00958 ± 0.01	29.72 ± 3.03	0.9083 ± 0.03
		Recon-GLGAN	$\textbf{0.00956} \pm \textbf{0.00}$	$\textbf{29.74} \pm \textbf{3.0}$	$\boldsymbol{0.9108\pm0.03}$
		Zero-filled	0.01949 ± 0.02	25.48 ± 3.73	0.859 ± 0.05
	ROI	UNet	0.00952 ± 0.01	28.48 ± 3.03	0.9036 ± 0.04
		GAN	$\textbf{0.00942} \pm \textbf{0.00}$	28.53 ± 3.12	0.904 ± 0.04
		Recon-GLGAN	0.00944 ± 0.01	$\textbf{28.54} \pm \textbf{3.19}$	0.9065 ± 0.04

			NMSE	PSNR	SSIM
4x	FI	Zero-filled	0.03989 ± 0.03	23.65 ± 3.38	0.7327 ± 0.08
		UNet	0.01962 ± 0.01	26.62 ± 3.209	0.8419 ± 0.05
		GAN	0.01934 ± 0.01	26.68 ± 3.08	0.8465 ± 0.05
		Recon-GLGAN	$\textbf{0.01905}\pm\textbf{0.01}$	$\textbf{26.8} \pm \textbf{3.25}$	$\boldsymbol{0.8497} \pm \boldsymbol{0.05}$
	ROI	Zero-filled	0.03886 ± 0.04	22.63 ± 3.87	0.7514 ± 0.07
		UNet	0.01931 ± 0.01	25.46 ± 3.35	0.8242 ± 0.06
		GAN	0.01925 ± 0.02	25.52 ± 3.38	0.8301 ± 0.06
		Recon-GLGAN	$\textbf{0.01878} \pm \textbf{0.02}$	$\textbf{25.66} \pm \textbf{3.26}$	$\textbf{0.8327} \pm \textbf{0.06}$

			NMSE	PSNR	SSIM
	FI	Zero-filled	0.08296 ± 0.06	20.46 ± 3.24	0.6443 ± 0.09
		UNet	0.03353 ± 0.02	24.26 ± 2.71	0.7547 ± 0.07
		GAN	0.03359 ± 0.02	24.25 ± 2.71	0.7557 ± 0.07
8x		Recon-GLGAN	$\textbf{0.03286} \pm \textbf{0.02}$	24.32 ± 2.68	$\boldsymbol{0.7562\pm0.07}$
	ROI	Zero-filled	0.07943 ± 0.08	19.47 ± 3.82	0.6435 ± 0.07
		UNet	0.03147 ± 0.02	23.31 ± 2.88	0.72 ± 0.07
		GAN	0.03129 ± 0.02	23.33 ± 2.92	$\boldsymbol{0.7294\pm0.07}$
		Recon-GLGAN	$\textbf{0.03102}\pm\textbf{0.02}$	$\textbf{23.34} \pm \textbf{2.82}$	0.7293 ± 0.07

Н

Experiment 1: Qualitative comparison of Recon-GLGAN with baseline GAN for 2x, 4x and 8x acceleration.

Η

С

Experiment 2: Quantitative comparison of reconstruction GAN architectures with context

and normal discriminator for 4x acceleration

		NMSE	PSNR	SSIM	
	FI	-	0.01857 ± 0.01	26.82 ± 2.89	0.8485 ± 0.05
BoconCAN		GL-ReconGAN	$\textbf{0.01844} \pm \textbf{0.01}$	$\textbf{26.91} \pm \textbf{3.12}$	$\textbf{0.8498} \pm \textbf{0.05}$
necondan	ROI	<u>-</u>	$\textbf{0.018} \pm \textbf{0.01}$	$\textbf{25.76} \pm \textbf{3.06}$	0.832 ± 0.06
		GL-ReconGAN	0.01836 ± 0.01	25.72 ± 3.24	$\textbf{0.8336} \pm \textbf{0.06}$
	FI	-	0.01862 ± 0.01	26.84 ± 3.10	0.8483 ± 0.06
SECAN	гі	GL-SEGAN	0.01817 ± 0.01	$\textbf{27.02} \pm \textbf{3.4}$	$\textbf{0.8545} \pm \textbf{0.05}$
SEGAN	POL	-	0.0185 ± 0.01	25.64 ± 3.19	0.8308 ± 0.07
	nor	GL-SEGAN	$\textbf{0.01793} \pm \textbf{0.01}$	$\textbf{25.87} \pm \textbf{3.56}$	$\textbf{0.838} \pm \textbf{0.06}$
	FI	2 1	0.01899 ± 0.01	26.78 ± 3.14	0.8481 ± 0.05
ComCAN		GL-ComGAN	$\textbf{0.01789} \pm \textbf{0.01}$	$\textbf{27.06} \pm \textbf{3.26}$	$\textbf{0.8505} \pm \textbf{0.05}$
Colligan	ROI	-	0.01872 ± 0.01	25.64 ± 3.28	0.8315 ± 0.06
		GL-ComGAN	$\textbf{0.01766} \pm \textbf{0.02}$	$\textbf{25.91} \pm \textbf{3.25}$	$\textbf{0.834} \pm \textbf{0.06}$
	FI	-	0.01903 ± 0.01	26.75 ± 3.06	0.8452 ± 0.06
DACAN		GL-DAGAN	$\textbf{0.01851} \pm \textbf{0.01}$	$\textbf{26.87} \pm \textbf{3.03}$	$\textbf{0.845} \pm \textbf{0.06}$
DAGAN	ROI	= 1	$\textbf{0.01838} \pm \textbf{0.01}$	$\textbf{25.68} \pm \textbf{3.04}$	0.8272 ± 0.07
		GL-DAGAN	0.01858 ± 0.01	25.62 ± 3.016	$\textbf{0.8277} \pm \textbf{0.07}$

Н

C

Experiment 2: Qualitative comparison of reconstruction GAN architectures with context and normal discriminator for 4x acceleration.

Н

C

Experiment 3: Quantitative and Qualitative comparison of segmentation architecture for ZF, GAN (1), Recon-GLGAN (2)

HTIC- IIT Madras

- We proposed a novel GAN architecture, Reconstruction Global-Local GAN (Recon-GLGAN) with a U-Net generator and a context discriminator.
- We showed that the concept of a context discriminator can be easily extended to existing GAN based reconstruction architectures

- Recon-GLGAN works only for fixed square/rectangular ROI.
- Does using GAN in image-to-image translation tasks generate artifacts ? If so how to tackle it.

Paper

https://arxiv.org/abs/1908.09262

Code

https://github.com/Bala93/Recon-GLGAN.git

Contact balamurali@htic.iitm.ac.in